
Lupin: Tolerating Partial Failures in a CXL Pod

Zhiting Zhu, Newton Ni, Yibo Huang, Yan Sun,

Zhipeng Jia, Nam Sung Kim, Emmett Witchel

2

One Host Distributed (many hosts)

Single-host software vs. distributed software

● Shared mutable state

● Centralized state

● Many efficient

algorithms

● Limited scalability

● Database

● In memory

MapReduce

3

One Host Distributed (many hosts)

Single-host software vs. distributed software

CPU CPU

CPU CPU

DRAM

● Shared mutable state

● Centralized state

● Many efficient

algorithms

● Limited scalability

● Database

● In memory

MapReduce

4

● Partitioned state

● Scalable

● Fast failover

● Difficult to construct and

maintain (performance)

● Key-value store

● MapReduce

One Host Distributed (many hosts)

Single-host software vs. distributed software

CPU CPU

CPU CPU

DRAM

CPU CPU

CPU CPU

DRAM

CPU CPU

CPU CPU

DRAM

● Shared mutable

state

● Centralized state

● Many efficient

algorithms

● Limited scalability

● Database

● In memory

MapReduce

5

● Partitioned state

● Scalable

● Fast failover

● Difficult to construct and

maintain (performance)

● Key-value store

● MapReduce

One Host
Distributed (many hosts)

Single-host software vs. distributed software

CPU CPU

CPU CPU

DRAM

CPU CPU

CPU CPU

DRAM

CPU CPU

CPU CPU

DRAM

● Shared mutable

state

● Centralized state

● Many efficient

algorithms

● Limited scalability

● Database

● In memory

MapReduce

6

● Partitioned state

● Scalable

● Fast failover

● Difficult to construct and

maintain (performance)

● Key-value store

● MapReduce

One Host
Distributed (many hosts)CXL Pod

● Machines

connected to CXL

memory

Single-host software vs. distributed software

CPU CPU

CPU CPU

DRAM

CPU CPU

CPU CPU

DRAM

CPU CPU

CPU CPU

DRAM

CPU CPU

CPU CPU

DRAM

CPU CPU

CPU CPU

DRAM

CXL Memory

CXL memory accessible to multiple hosts via PCIe

● 8-16 Hosts physically connected to a CXL memory module
○ CXL 3.1 allows fine-grained memory sharing

○ Multi-host HW cache coherence on entire physical CXL memory

■ Probably not realizable

○ Pod fabric manager is control software

CPU 1 CPU 2 CPU N…

DRAM

…

Host 1

CXL Shared

Memory

8-16 Hosts

~250 ns latency

CXL Pod

Fabric Manager

Reboot hosts/Send

message signal interrupt

A tale of two climates

● Shared mutable

state

● Centralized state

● Many efficient

algorithms

● Limited scalability

● Database

● In memory

MapReduce

8

● Replicated state

machines

● Scalable

● Fast failover

● Difficult to construct and

maintain (performance)

● Key-value store

● MapReduce

One Host Distributed (many hosts)CXL Pod

● Reuse efficient

single host

algorithms

● Shared state

across machines

● Low tail latency

CPU CPU

CPU CPU

DRAM

CPU CPU

CPU CPU

DRAM

CPU CPU

CPU CPU

DRAM

CPU CPU

CPU CPU

DRAM

CPU CPU

CPU CPU

DRAM

CXL Memory

What application will benefit from a CXL pod?

● A shared-memory MapReduce

○ High performance

○ Limited scalability by single host

OS-1

Process-1

Local DRAM Host-1

CXL Memory

OS-2

Process-2

Local DRAM Host-2

1 Application

Challenges: Efficiently tolerate partial failure

● Partial failure

○ One or more process/OS dies

○ Other processes or OSes remain live

● Efficiently tolerate partial failure

○ Do I have to restart all OSes (or all processes)?

○ Full restart is bad for availability

○ OS reboot takes minutes (79s - 2.5 mins)

Challenges: Correctly tolerate partial failure

● Shared data structures go in shared CXL

○ Shared data structures need synchronization

● OSes & applications have to synchronize on CXL memory

○ Spinlocks, futexes, mutexes, semaphores are not fault-tolerant

○ Die with a lock held Deadlock⇒

● Recovery needs to ensure input are processed exactly once
○ Duplicated output/update

○ Missing output /update

Lupin: Software infrastructure for partial failure tolerance

● Efficiency

○ Applications should remain available during recover

○ Don’t have to pause application or other OS until dead

OS reboot

● Correctness

○ No deadlock

○ Recovery needs to ensure that operation executes

exactly once

*The Lupin (bluebonnet) is known for its nutritious seed pod

CXL pod partial failure model

● Make CXL memory persistent

○ Give it independent power supply

○ Protect integrity with ECC

● Efficient recovery

○ Application can restore state from CXL memory

● How do we tolerate partial failure?

Lupin: Software infrastructure for partial failure tolerance

● Failure detection and notification

■ Instance identifier

■ CXL control group

■ Partial failure detection

■ Partial failure notification

● Cooperative recovery

● Partial failure tolerant kernel memory allocation

Instance identifiers

● Instance identifiers (ii) for OS and processes

○ Stable ID (ii.id) +

○ Generation number (ii.gen)

● Resources in Lupin are owned by instance ids

○ E.g., recoverable locks have ii field

○ Current generation numbers in CXL memory

■ Read by any host as generation[ii.id]

○ Instance ids will be useful for recovery
Generation numbers

CXL memory
11

OS

Host-1

Local DRAM

os.ii.id = 1

OS

Host-2

Local DRAM

os.ii.id = 2

● CXL control groups (CxlCG)

○ A cross-host process group

○ OS data structures in CXL memory

○ Group member can get notification when process

dies/rejoins

● Control process and application process

○ Control process handles failure notification

CXL control group (CxlCG)
Control

Process

Host-1

App

Process-1

OS

● CXL control groups (CxlCG)

○ A cross-host process group

○ OS data structures in CXL memory

○ Group member can get notification when process

dies/rejoins

● Control process and application process

○ Control process handles failure notification

CXL control group (CxlCG)
Control

Process

Host-1

App

Process-1

OS

● CXL control groups (CxlCG)

○ A cross-host process group

○ OS data structures in CXL memory

○ Group member can get notification when process

dies/rejoins

● Control process and application process

○ Control process handles failure notification

CXL control group (CxlCG)
Control

Process

Host-1

App

Process-1

OS

Notify

● Process failure detection

○ Already done by OS!

○ OS notifies CXL control group about failures

○ Detection takes: 175 µs

● OS failure detection

○ Heartbeats via CXL memory

○ Fabric manager monitors OS heartbeats

○ Fabric manager power cycles (dead|slow) host

● Fabric manager is reliable failure detector

○ Power cycle makes sure OS is dead!

○ After OS dies, signal other OSes in the pod via

message signal interrupt (MSI-X)

Control

Process

Control

Process

Host-1

App

Process-1

OS OS

OS Heartbeat in CXL

CXL Pod

Fabric Manager

Failure detection

Host-2

● Notification via CXL control groups (CxlCG)

○ OS talks to process via netlink messages

○ Notification: 106 µs

● Mechanism to notify application

○ Application defines policy

● Control process can restart application process,

or migrate

Failure notification
Control

Process

Host-1

App

Process-1

Control

Process

Host-2

Control

Process

Host-1

App

Process-1

OS OS

OS

OS Heartbeat in CXL

Fabric

Manager

● Notification via CXL control groups (CxlCG)

○ OS talks to process via netlink messages

○ Notification: 106 µs

● Mechanism to notify application

○ Application defines policy

● Control process can restart application process,

or migrate

Failure notification
Control

Process

Host-1

App

Process-1

Control

Process

Host-2

Control

Process

Host-1

App

Process-1

OS OS

OS

OS Heartbeat in CXL

Fabric

Manager

● Notification via CXL control groups (CxlCG)

○ OS talks to process via netlink messages

○ Notification: 106 µs

● Mechanism to notify application

○ Application defines policy

● Control process can restart application process,

or migrate

Failure notification
Control

Process

Host-1

App

Process-1

Control

Process

Host-2

Control

Process

Host-1

App

Process-1

OS OS

OS

Notify

OS Heartbeat in CXL

Fabric

Manager

● Notification via CXL control groups (CxlCG)

○ OS talks to process via netlink messages

○ Notification: 106 µs

● Mechanism to notify application

○ Application defines policy

● Control process can restart application process,

or migrate

Failure notification
Control

Process

Host-1

App

Process-1

Restart

Control

Process

Host-2

Control

Process

Host-1

App

Process-1

OS OS

OS

Notify App

Process-2

OS Heartbeat in CXL

Fabric

Manager

● Notification via CXL control groups (CxlCG)

○ OS talks to process via netlink messages

○ Notification: 106 µs

● Mechanism to notify application

○ Application defines policy

● Control process can restart application process,

or migrate

Failure notification
Control

Process

Host-1

App

Process-1

Restart

Control

Process

Host-2

Control

Process

Host-1

App

Process-1

OS OS

OS

Notify App

Process-2

OS Heartbeat in CXL

Fabric

Manager

● Notification via CXL control groups (CxlCG)

○ OS talks to process via netlink messages

○ Notification: 106 µs

● Mechanism to notify application

○ Application defines policy

● Control process can restart application process,

or migrate

Failure notification
Control

Process

Host-1

App

Process-1

Restart

Control

Process

Host-2

Control

Process

Host-1

App

Process-1

OS

App

Process-2

OS

Migrate

OS

Notify App

Process-2

OS Heartbeat in CXL

Fabric

Manager

Recovery and cooperative recovery

● Self recovery: OS1 must recover OS1’s failure

○ Crashed processes and OSes recover themselves

○ But OS reboot is slow (1+ minutes)

● Cooperative recovery: OS2 can recover OS1’s failure

○ Live OS/process recovers the failed process/OS by executing its recovery

method

○ Efficiently recover OS without waiting failed OS to reboot

○ Safety: only one OS/process runs the recovery method for a failed

OS/process

OS memory allocator

● Cooperative allocator for all OSes in pod

● A single recoverable test-and-test-and-set lock protects the metadata

● Atomic recoverable allocation/free with redo log

○ Record the operation, parameters and new values

Buddy

allocator

metadata

Redo

log 1

CXL Shared Memory

OS1 OS2

Redo

log 2

Recovery for kernel memory allocator

● Safe lock transfer algorithm: only one OS can be in the critical section

○ Fabric manager is reliable failure detector

■ Because it power cycles machine before notifying failure

○ Change owner of lock via atomic compare and swap

■ Only one OS will succeed and help complete or abort the current operation

Buddy

allocator

metadata

Redo

log 1

CXL Shared Memory

OS1 OS2

Redo

log 2

Fabric Manager

OS3

Redo

log 3

Owner: 1, Gen: 0

Recovery for kernel memory allocator

● Safe lock transfer algorithm: only one OS can be in the critical section

○ Fabric manager is reliable failure detector

■ Because it power cycles machine before notifying failure

○ Change owner of lock via atomic compare and swap

■ Only one OS will succeed and help complete or abort the current operation

Buddy

allocator

metadata

Redo

log 1

CXL Shared Memory

OS1 OS2

Redo

log 2

Fabric Manager

OS3

Redo

log 3

Owner: 1, Gen: 0

Recovery for kernel memory allocator

● Safe lock transfer algorithm: only one OS can be in the critical section

○ Fabric manager is reliable failure detector

■ Because it power cycles machine before notifying failure

○ Change owner of lock via atomic compare and swap

■ Only one OS will succeed and help complete or abort the current operation

Buddy

allocator

metadata

Redo

log 1

CXL Shared Memory

OS1 OS2

Redo

log 2

Fabric Manager
Detect

OS3

Redo

log 3

Owner: 1, Gen: 0

Recovery for kernel memory allocator

● Safe lock transfer algorithm: only one OS can be in the critical section

○ Fabric manager is reliable failure detector

■ Because it power cycles machine before notifying failure

○ Change owner of lock via atomic compare and swap

■ Only one OS will succeed and help complete or abort the current operation

Buddy

allocator

metadata

Redo

log 1

CXL Shared Memory

OS1 OS2

Redo

log 2

Fabric Manager

OS3

Redo

log 3

Owner: 1, Gen: 0

Recovery for kernel memory allocator

● Safe lock transfer algorithm: only one OS can be in the critical section

○ Fabric manager is reliable failure detector

■ Because it power cycles machine before notifying failure

○ Change owner of lock via atomic compare and swap

■ Only one OS will succeed and help complete or abort the current operation

Buddy

allocator

metadata

Redo

log 1

CXL Shared Memory

OS1 OS2

Redo

log 2

Fabric Manager
Power cycle

OS3

Redo

log 3

Owner: 1, Gen: 0

Recovery for kernel memory allocator

● Safe lock transfer algorithm: only one OS can be in the critical section

○ Fabric manager is reliable failure detector

■ Because it power cycles machine before notifying failure

○ Change owner of lock via atomic compare and swap

■ Only one OS will succeed and help complete or abort the current operation

Buddy

allocator

metadata

Redo

log 1

CXL Shared Memory

OS2

Redo

log 2

Fabric Manager

OS3

Redo

log 3

Owner: 1, Gen: 0

Recovery for kernel memory allocator

● Safe lock transfer algorithm: only one OS can be in the critical section

○ Fabric manager is reliable failure detector

■ Because it power cycles machine before notifying failure

○ Change owner of lock via atomic compare and swap

■ Only one OS will succeed and help complete or abort the current operation

Buddy

allocator

metadata

Redo

log 1

CXL Shared Memory

OS2

Redo

log 2

Fabric ManagerNotify

OS3

Redo

log 3

Owner: 1, Gen: 0

Recovery for kernel memory allocator

● Safe lock transfer algorithm: only one OS can be in the critical section

○ Fabric manager is reliable failure detector

■ Because it power cycles machine before notifying failure

○ Change owner of lock via atomic compare and swap

■ Only one OS will succeed and help complete or abort the current operation

Buddy

allocator

metadata

Redo

log 1

CXL Shared Memory

OS2

Redo

log 2

Fabric Manager

OS3

Redo

log 3

Owner: 1, Gen: 0

Recovery for kernel memory allocator

● Safe lock transfer algorithm: only one OS can be in the critical section

○ Fabric manager is reliable failure detector

■ Because it power cycles machine before notifying failure

○ Change owner of lock via atomic compare and swap

■ Only one OS will succeed and help complete or abort the current operation

Buddy

allocator

metadata

Redo

log 1

CXL Shared Memory

OS2

Redo

log 2

Fabric Manager

OS3

Redo

log 3

Owner: 1, Gen: 0Owner: 2, Gen: 0

Recovery for kernel memory allocator

● Safe lock transfer algorithm: only one OS can be in the critical section

○ Fabric manager is reliable failure detector

■ Because it power cycles machine before notifying failure

○ Change owner of lock via atomic compare and swap

■ Only one OS will succeed and help complete or abort the current operation

Buddy

allocator

metadata

Redo

log 1

CXL Shared Memory

OS2

Redo

log 2

Fabric Manager

OS3

Recover

Redo

log 3

Owner: 1, Gen: 0Owner: 2, Gen: 0

Evaluation

● 16 virtual machines, each 2 vCPU in simulated CXL pod

○ Ubuntu 22.04.2 LTS (Linux kernel v5.19)

○ Danger: in-host cache coherence (CC) simulates cross-host CC

○ CXL: VMs run on the same NUMA node as CXL memory

■ ~250ns

● CPU (Intel SPR): 2× Intel® Xeon 8460H CPU @2.2 GHz

● RAM: 8× DDR5-4800 channels on each socket (16 in total), 1× DDR5-4800

CXL memory with PCIe 5.0 ×8

● NIC: BlueField-2 ConnectX-6 Dx, 100 Gbps

● Application: MapReduce

○ Global result array and thread-local hash table stored in CXL memory

Overhead for recoverable locks

● MCS vs. TATAS

○ Higher latency

○ Lower variability

● Instance identifiers are

lightweight

● JJ focus too much on

strong fairness properties

over efficiency

Mean Std. Dev

Test-and-test-and-set 5.4µs 2.3µs

Recoverable TATAS 5.6µs 2.3µs

MCS queue lock 7.5µs 0.2µs

Recoverable MCS 8.1µs 0.1µs

JJ (Jayanti and Joshi,
2022)

95.7µs 0.2µs

Slowdown due to crash recovery — MapReduce

● Crashes are spread evenly across the executions

● Failure detection, notification, and recovery is fast

○ Black Scholes and Dedup from PARSEC

Crashes Word
Count

K Means Matrix
Multiply

Histogram Black
Scholes

Dedup

0 0.68s 3.86s 5.24s 0.23s 2.36s 0.74s

1 0.0% 0.0% 0.0% 0.0% 0.0% 3.4%

8 2.9% 2.5% 4.6% 7.8% 0.0% 6.3%

Thank you

	Slide: 1
	Single-host software vs. distributed software (1)
	Single-host software vs. distributed software (2)
	Single-host software vs. distributed software (3)
	Single-host software vs. distributed software (1)
	Single-host software vs. distributed software (2)
	CXL memory accessible to multiple hosts via PCIe
	A tale of two climates
	What application will benefit from a CXL pod?
	Challenges: Efficiently tolerate partial failure
	Challenges: Correctly tolerate partial failure
	Lupin: Software infrastructure for partial failure tolerance
	CXL pod partial failure model
	Lupin: Software infrastructure for partial failure tolerance
	Instance identifiers
	CXL control group (CxlCG) (1)
	CXL control group (CxlCG) (2)
	CXL control group (CxlCG) (3)
	Failure detection
	Failure notification (1)
	Failure notification (2)
	Failure notification (3)
	Failure notification (4)
	Failure notification (5)
	Failure notification (6)
	Recovery and cooperative recovery
	OS memory allocator
	Recovery for kernel memory allocator (1)
	Recovery for kernel memory allocator (2)
	Recovery for kernel memory allocator (3)
	Recovery for kernel memory allocator (4)
	Recovery for kernel memory allocator (5)
	Recovery for kernel memory allocator (6)
	Recovery for kernel memory allocator (7)
	Recovery for kernel memory allocator (8)
	Recovery for kernel memory allocator (9)
	Recovery for kernel memory allocator (10)
	Evaluation
	Overhead for recoverable locks
	Slowdown due to crash recovery — MapReduce
	Thank you
	Slide: 23
	Porting single-host, in-memory application
	(3) Crash consistent
	(4) Application recovery: process input exactly once
	Idempotent application: MapReduce (1)
	Idempotent application: MapReduce (2)
	Idempotent application: MapReduce (3)
	Idempotent application: MapReduce (4)
	Idempotent application: MapReduce (5)
	Idempotent application: Recover MapReduce (1)
	Idempotent application: Recover MapReduce (2)
	Idempotent application: Recover MapReduce (3)
	Idempotent application: Recover MapReduce (4)

