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● Many efficient 

algorithms
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● Database

● In memory 

MapReduce
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● Partitioned state

● Scalable

● Fast failover

● Difficult to construct and 

maintain (performance)

● Key-value store

● MapReduce
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CXL memory accessible to multiple hosts via PCIe

● 8-16 Hosts physically connected to a CXL memory module
○ CXL 3.1 allows fine-grained memory sharing

○ Multi-host HW cache coherence on entire physical CXL memory 

■ Probably not realizable

○ Pod fabric manager is control software
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A tale of two climates
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● Replicated state 

machines

● Scalable

● Fast failover

● Difficult to construct and 

maintain (performance)

● Key-value store

● MapReduce

One Host Distributed (many hosts)CXL Pod

● Reuse efficient 

single host 

algorithms

● Shared state 

across machines

● Low tail latency
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What application will benefit from a CXL pod?

● A shared-memory MapReduce

○ High performance

○ Limited scalability by single host

OS-1

Process-1

Local DRAM Host-1

CXL Memory

OS-2

Process-2

Local DRAM Host-2

1 Application



Challenges: Efficiently tolerate partial failure

● Partial failure

○ One or more process/OS dies

○ Other processes or OSes remain live

● Efficiently tolerate partial failure

○ Do I have to restart all OSes (or all processes)?

○ Full restart is bad for availability

○ OS reboot takes minutes (79s - 2.5 mins)



Challenges: Correctly tolerate partial failure

● Shared data structures go in shared CXL

○ Shared data structures need synchronization

● OSes & applications have to synchronize on CXL memory

○ Spinlocks, futexes, mutexes, semaphores are not fault-tolerant

○ Die with a lock held  Deadlock⇒

● Recovery needs to ensure input are processed exactly once
○ Duplicated output/update

○ Missing output /update



Lupin: Software infrastructure for partial failure tolerance

● Efficiency

○ Applications should remain available during recover

○ Don’t have to pause application or other OS until dead 

OS reboot

● Correctness

○ No deadlock

○ Recovery needs to ensure that operation executes 

exactly once

*The Lupin (bluebonnet) is known for its nutritious seed pod



CXL pod partial failure model

● Make CXL memory persistent

○ Give it independent power supply

○ Protect integrity with ECC 

● Efficient recovery

○ Application can restore state from CXL memory

● How do we tolerate partial failure?



Lupin: Software infrastructure for partial failure tolerance

● Failure detection and notification

■ Instance identifier

■ CXL control group

■ Partial failure detection

■ Partial failure notification

● Cooperative recovery

● Partial failure tolerant kernel memory allocation



Instance identifiers

● Instance identifiers (ii) for OS and processes

○ Stable ID (ii.id) + 

○ Generation number (ii.gen)

● Resources in Lupin are owned by instance ids

○ E.g., recoverable locks have ii field

○ Current generation numbers in CXL memory

■ Read by any host as generation[ii.id]

○ Instance ids will be useful for recovery
Generation numbers 

CXL memory
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● CXL control groups (CxlCG)

○ A cross-host process group

○ OS data structures in CXL memory

○ Group member can get notification when process 

dies/rejoins

● Control process and application process

○ Control process handles failure notification

CXL control group (CxlCG)
Control 

Process

Host-1

App 

Process-1

OS
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● Process failure detection

○ Already done by OS!

○ OS notifies CXL control group about failures

○ Detection takes: 175 µs

● OS failure detection

○ Heartbeats via CXL memory

○ Fabric manager monitors OS heartbeats

○ Fabric manager power cycles (dead|slow) host

● Fabric manager is reliable failure detector

○ Power cycle makes sure OS is dead!

○ After OS dies, signal other OSes in the pod via 

message signal interrupt (MSI-X)

Control 
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Control 

Process

Host-1

App 
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Failure detection

Host-2



● Notification via CXL control groups (CxlCG)

○ OS talks to process via netlink messages

○ Notification: 106 µs

● Mechanism to notify application

○ Application defines policy

● Control process can restart application process, 

or migrate
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Recovery and cooperative recovery

● Self recovery: OS1 must recover OS1’s failure

○ Crashed processes and OSes recover themselves

○ But OS reboot is slow (1+ minutes)

● Cooperative recovery: OS2 can recover OS1’s failure

○ Live OS/process recovers the failed process/OS by executing its recovery 

method

○ Efficiently recover OS without waiting failed OS to reboot

○ Safety: only one OS/process runs the recovery method for a failed 

OS/process



OS memory allocator

● Cooperative allocator for all OSes in pod

● A single recoverable test-and-test-and-set lock protects the metadata

● Atomic recoverable allocation/free with redo log

○ Record the operation, parameters and new values

Buddy 

allocator 

metadata

Redo 

log 1

CXL Shared Memory

OS1 OS2

Redo 

log 2



Recovery for kernel memory allocator

● Safe lock transfer algorithm: only one OS can be in the critical section

○ Fabric manager is reliable failure detector

■ Because it power cycles machine before notifying failure 

○ Change owner of lock via atomic compare and swap

■ Only one OS will succeed and help complete or abort the current operation 
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Owner: 1, Gen: 0
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○ Fabric manager is reliable failure detector

■ Because it power cycles machine before notifying failure 

○ Change owner of lock via atomic compare and swap

■ Only one OS will succeed and help complete or abort the current operation 

Buddy 

allocator 

metadata

Redo 

log 1

CXL Shared Memory

OS2

Redo 

log 2

Fabric Manager

OS3

Recover

Redo 

log 3

Owner: 1, Gen: 0Owner: 2, Gen: 0



Evaluation

● 16 virtual machines, each 2 vCPU in simulated CXL pod

○ Ubuntu 22.04.2 LTS (Linux kernel v5.19)

○ Danger: in-host cache coherence (CC) simulates cross-host CC

○ CXL: VMs run on the same NUMA node as CXL memory

■ ~250ns

● CPU (Intel SPR): 2× Intel® Xeon 8460H CPU @2.2 GHz

● RAM: 8× DDR5-4800 channels on each socket (16 in total), 1× DDR5-4800 

CXL memory with PCIe 5.0 ×8

● NIC: BlueField-2 ConnectX-6 Dx, 100 Gbps

● Application: MapReduce

○ Global result array and thread-local hash table stored in CXL memory



Overhead for recoverable locks

● MCS vs. TATAS

○ Higher latency

○ Lower variability

● Instance identifiers are 

lightweight

● JJ focus too much on 

strong fairness properties 

over efficiency

Mean Std. Dev

Test-and-test-and-set 5.4µs 2.3µs

Recoverable TATAS 5.6µs 2.3µs

MCS queue lock 7.5µs 0.2µs

Recoverable MCS 8.1µs 0.1µs

JJ (Jayanti and Joshi, 
2022)

95.7µs 0.2µs



Slowdown due to crash recovery —  MapReduce

● Crashes are spread evenly across the executions

● Failure detection, notification, and recovery is fast

○ Black Scholes and Dedup from PARSEC

Crashes Word 
Count

K Means Matrix 
Multiply

Histogram Black 
Scholes

Dedup

0 0.68s 3.86s 5.24s 0.23s 2.36s 0.74s

1 0.0% 0.0% 0.0% 0.0% 0.0% 3.4%

8 2.9% 2.5% 4.6% 7.8% 0.0% 6.3%



Thank you
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